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Monitoring General Linear Profiles When
Random Errors Have Contaminated
Normal Distributions
Longcheen Huwang,a*† Yi-Hua Tina Wangb and Cheng-Che Shena
We consider the quality of a process which can be characterized by a general linear profile where the random error has a
contaminated normal distribution. On the basis of trimmed least squares estimation, new control charts for monitoring
the coefficient parameters and/or the error variance of the profile are proposed. Simulation studies show that the proposed
control charts outperform the existing competitors under such a profile. An example from manufacturing facility is used to
illustrate the applicability of the proposed charts. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

S
tatistical process control (SPC) has been successfully applied to monitor various industrial processes. In most SPC applications,
the quality of a process can be adequately represented by the distribution of a univariate quality characteristic or by the
multivariate distribution of a vector consisting of a few quality characteristics. In many applications, however, the quality of a

process or product is characterized and summarized better by a relationship (or profile) between the response variable and one or
more explanatory variables; that is, the main topic is on monitoring the profile that represents such a relationship, instead of on
monitoring a single quality characteristic or several quality characteristics.

For monitoring the simple linear profiles, Kang and Albin1 proposed two different control charting schemes in Phase I and Phase II
monitoring. One of them is a multivariate T2 chart, and the other is the combination of an exponentially weighted moving average
(EWMA) chart and a range (R) chart. Kim et al.2 proposed using a combination of three EWMA charts to, respectively, detect a shift
in the intercept, slop, and standard deviation simultaneously in Phase II monitoring. They also proposed applying similar
Shewhart-type control charts in Phase I monitoring. Gupta et al.3 compared the performance of the control charts proposed by
Croarkin and Varner4 and Kim et al.2 for monitoring simple linear profiles in Phase II study. They concluded that the combined EWMA
charts of Kim et al.2 are better than the charting scheme of Croarkin and Varner4. Mahmoud and Woodall5 studied several control
charting schemes for monitoring simple linear profiles in Phase I study. Zou et al.6 proposed a control charting scheme on the basis
of a change point model for monitoring simple linear profiles where the process parameters are unknown but can be estimated from
the in-control (IC) historical data. Mahmoud et al.7, based on likelihood ratio statistics, proposed a change point method for detecting
sustained shifts in simple linear profiles in Phase I study. Zou et al.8 studied a self-starting control chart for monitoring simple linear
profiles when the process parameters are unknown but some IC data in Phase I study are available. For monitoring general linear
profiles, Zou et al.9 applied an MEWMA single chart to the transformations of estimated profile parameters in Phase II study. More
studies for monitoring linear profiles can be found in the literature. See, e.g. Jensen et al.10; Mestek et al.11; Stover and Brill12; Lawless
et al.13; Wang and Huwang14.

Although monitoring the linear profiles is an important issue, in many practical applications, the profiles cannot be represented by
linear models adequately. Walker and Wright15 studied vertical density profiles which apparently cannot be represented by linear
profiles. Woodall et al.16 proposed control charts to monitor the same vertical density profiles. Williams et al.17 developed three
general approaches to the formulation of T2 statistics based on nonlinear model estimation in Phase I study. Colosimo and Pacella18

employed principal component analysis to identify systematic patterns in roundness profiles. Williams et al.19 utilized data from
DuPont to monitor dose–response profiles used in high-throughput screening based on the nonlinear model approaches of Williams
et al.17, where a four-parameter logistic regression model was used to describe the profiles. Yeh et al.20 proposed Phase I profile
monitoring schemes for binary responses that could be represented by the logistic regression model. Shang et al.21developed a
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control chart by integrating the EWMA scheme and the likelihood ratio test based on the logistic regression model in Phase II study.
Jin and Shi22 applied dimension-reduction techniques to study a stamping tonnage profile, which apparently is a nonlinear profile.
Lada et al.23 and Ding et al.24 used dimension-reduction techniques, including wavelet and independent component analysis to study
a general category of nonlinear profiles.

Recently, Zou et al.25 integrated a MEWMA procedure with a generalized likelihood ratio test (Fan et al.26) based on the local linear
smoother of Fan and Gijbels27 to develop a nonparametric control chart for monitoring general smooth regression profiles. Qiu et al.28

proposed monitoring smooth profiles which can be described by a nonparametric mixed-effects model to account for the
within-profile correlation. Zi et al.29 developed a distribution-free and robust method for monitoring linear profiles.

In this article, we focus on a study of Phase II monitoring for general linear profiles when random errors have contaminated
normal distributions. To be specific, assume that for the jth sample collected overtime, we have the observations (Xj, yj), where

yj ¼ ðy1j; y2j; . . . ; ynj jÞ
0
is an nj-variate vector and Xj is a nj� p (nj> p) matrix. Precisely, when the process is in control, the

underlying model is assumed to be

yj ¼ Xjbþ «j; (1)

where b= (b1, b2, . . ., bp)0 is a p-dimensional coefficient vector and «j ¼ ðe1j; e2j; . . . ; enj jÞ
0
is a vector of independent, identically

distributed random variables with mean 0, variance s2, and distribution function F. It is assumed that Xj is of form
�
1; X�

j Þ, where each
column of X�

j is orthogonal to 1 and 1 is an nj-variate vector of all 1’s. Otherwise, we can obtain this form through some appropriate
transformations. The explanatory variable matrix Xj is usually the same for different j and the nj’s are equal in practical applications
(hereafter X and n are used to replace Xj and nj). Here, we assume that each random error eij, 1 ≤ i ≤ n, has a contaminated normal
distribution (a mixture of normal distributions). In spite of the advantages, including efficiency when F is a normal distribution, of
the least squares estimator of b, this estimator is inefficient when F has a contaminated normal distribution, and the estimator
possesses high sensitivity to spurious data. The presence of spurious observations can be modeled by letting F be a mixture of
two normal distributions, i.e. F� (1� k)N(y,s2) + kN(’,t2). When k is small, y=’, t2 = cs2 and c large, F is commonly used as a
heavy-tailed alternative to a normal distribution. For example, the family of t distributions is of this type. (Write t=GH, where H is
normal and G is independently distributed as the inverse of the square root of a chi-square divided by its degrees of freedom) On
the other hand, if k is small, ’ quite different from y and t small, then F generates outliers near the value ’. It is a common statistical
practice to study the robustness of a statistical procedure by constructing a simple class of alternative mixture distributions. In the
article, we will especially emphasize on the above two situations when F has a contaminated normal distribution. As illustrated by
a real example from manufacturing facility in Section 5, general linear profiles can have random errors with contaminated normal
distributions in realistic situations.

For the location model, three classes, M, L, and R of estimators have been suggested as alternatives to the traditional sample mean
(see Lehmann30 for an introduction). Among the L estimators, the trimmed mean is particularly attractive since it is efficient and easy
to compute under most circumstances. Stigler31 (p. 1070) applied robust estimators to data from 18th- and 19th-century experiments
design to measure basic physical constants. He concluded that the 10% trimmed mean (the smallest nonzero trimming percentage
used in the study) is preferable as the recommended estimator. Koenker and Bassett32, who extended the concept of quantiles to the
linear model, proposed a method of defining a regression analog to the trimmed mean. Let 0< a< 1. For a certain random sample
(X, y) satisfying (1), where y= (y1, y2, . . ., yn)0 and X0 = (x1,x2, . . .,xn), they defined the ath regression quantile, denoted by b

^
(a), to be any

solution to the minimization problem:

min
b2Rp

�X
i2A

1� að Þ yi � x
0
ib

�� ��þX
i2Ac

ajyi � x
0
ibjg;A ¼ f i : yi � x

0
ib < 0g: (2)

They showed that the regression quantiles have asymptotic behavior similar to those of sample quantiles in the one-sample
problem. For more literature reviews about regression quantiles, interested readers can see Koenker33 and Koenker and Hallock34.
As Koenker and Bassett32 pointed out, regression quantiles can be computed by standard linear programming techniques
(Meketon35). They also recommended the following trimmed least squares estimators (b

^
KB(a)): Remove from the sample any data

whose residual from b
^
(a) is negative or whose residual from b

^
(1� a) is positive and calculate the least squares estimator using the

remaining data. Rupport and Carroll36 proposed another regression analog to the trimmed mean. The estimator is denoted by b
^
PE

(a) for 0< a< 1, which requires a preliminary estimator b0. Define the residuals from the preliminary estimator b
^
0 as ri= yi� x0i b

^
0,

i= 1, 2, . . ., n. Let r1n and r2n be the [na]th and [n(1� a)]th ordered residuals, respectively. Then, the estimator b
^
PE(a) is the least squares

estimator that is calculated after all observations are removed that satisfy

ri≤r1n or ri≥r2n: (3)

Suppose that the residuals from b
^
0 are calculated and that those data corresponding to the [a] smallest and [a] largest residuals are

removed. Then, b
^
PE(a) is defined as the least squares estimator calculated from the remaining data. Rupport and Carroll 36 showed

that the distribution of the estimator b
^
PE(a) depends heavily on that of the preliminary estimator b

^
0. Surprisingly, if the
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013
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preliminary estimate is either the least squares or least-absolute-deviation estimator, then b
^
PE(a) is inefficient at normal model.

However, if the preliminary estimator b
^
0 is the average of the ath and (1� a)th regression quantiles, they claimed that the estimators b

^
PE

(RQ(a)) (i.e. the estimator b
^
PE(a) with b

^
0 = (b

^
(a) +b

^
(1� a))/2) and b

^
KB(a) have the same asymptotic distribution under the following

assumptions: (i) F has a continuous density f that is positive on the support of F. (ii) The ith row of X, x0 i= (xi1,xi2, . . .,xip), satisfies xi1 = 1
for i = 1, 2, . . ., n and

Xn

i¼1
xij ¼ 0 for j = 2, . . ., p. (iii) limn!1 maxl≤p;i≤n n�1

2 xilj jð Þ� � ¼ 0. (iv) There exists positive definite Q such that

limn!1n� 1(X0X) =Q. 5. b̂0 � b� ye
� �

¼ Op n�1
2ð Þ for some constant y, where e0 = (1,0, . . .,0) is a p-dimensional column vector.

Precisely, they showed that if F is symmetric (i.e. f is symmetric about zero),

n
1
2 b̂PE RQ að Þð Þ � b
� �

!L N 0;Q�1s2 a; Fð Þ� �
; (4)

where

s2 a; Fð Þ ¼ 1� 2að Þ�2
Z x2

x1

z2dF þ a x21 þ x22
� �� 	

;

x1 = F� 1(a), and x2 = F� 1(1� a). The above result also holds when b
^
PE(RQ(a)) is replaced by b̂KB að Þ. Let S be the sum of squares for

residuals calculated from the trimmed sample, that is,

S ¼ y
0
B
�
Ip � X

�
X

0
BXÞ�X 0 ÞBy; (5)

where B is a n� n diagonal matrix with Bii=0 or 1 according to i satisfies (3) or not. Let c1 = e0(b
^
(a)�b

^
PE(RQ(a))), c2 = e0(b

^
(1� a)�b

^
PE(RQ

(a))), and

s2 a; Fð Þ ¼ 1� 2að Þ�2� n� pð Þ�1Sþ a c21 þ c22
� �� a2 c1 þ c2ð Þ2Þ: (6)

Rupport and Carroll36 also showed that

s2 a; Fð Þ!p s2 a; Fð Þ: (7)
2. Control charts for monitoring coefficient parameters

Zou et al.9 proposed a MEWMA scheme to monitor a general linear profile where the p+ 1 parameters, the p coefficients and the
standard deviation s, are controlled jointly in Phase II study. Based on model (1), for the jth sample (X, yj) they defined

Z j bð Þ ¼ b̂LS;j � b
� �

=s (8)

and

Zj sð Þ ¼ Φ�1 G n� pð Þŝ2
LS;j=s

2; n� p
� �n o

; (9)

where b̂LS;j ¼ X
0
X

� ��1
X

0
yj; ŝ

2
LS;j ¼ n� pð Þ�1ðyj � Xb̂LS;jÞ

0
yj � Xb̂LS;j

� �
;Φ�1 �ð Þ is the inverse of the standard normal distribution

function, and G(�;n) is the chi-squared distribution function with n degrees of freedom. Denote the p+1-variate random vector Zj by

(Zj(b),Zj(s))0. Then, the vector is a multivariate random vector with mean 0 and covariance matrix Σ ¼ X
0
X

� ��1
0

0 1

� 	
when the

process is in control and F is normal. They used the charting statistic

W j ¼ lZ j þ 1� lð ÞW j�1; j ¼ 1; 2; . . . ; (10)

where W0 is a starting vector and l is a smoothing constant. The MEWMA chart triggers a signal if

Uj ¼ W
0
j Σ�1W j > L

l
2� l

; (11)

where L> 0 is determined to achieve the desired IC ARL. The charting scheme of Zou et al.9can be treated as a special case of MEWMA

charts. The MEWMA chart was first invented by Lowry et al.37. Prabhu and Runger38 studied the design of MEWMA charts.
Note that unlike the approach of Zou et al.9 for which a single MEWMA chart is used to monitor the vector of coefficient parameters

b and the standard deviation s simultaneously, in the article, we will propose two separate control charts for monitoring b and s,
respectively, because there is no appropriate transformation like (9) under the assumption that F has a contaminated normal
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013



Table I. Simulated values of E(lns2(a,F))
(k,b) a= 0 a=0.05 a= 0.1 a= 0.15 a=0.25

(0,1) �0.056 0.044 0.052 0.067 0.104
(0.05,3) 0.207 0.261 0.204 0.182 0.196
(0.05,5) 0.480 0.472 0.303 0.230 0.221
(0.05,10) 1.021 0.915 0.473 0.292 0.242
(0.1,3) 0.432 0.460 0.358 0.304 0.290
(0.1,5) 0.895 0.841 0.572 0.422 0.347
(0.1,10) 1.750 1.583 0.955 0.607 0.404
(0.25,3) 0.948 0.962 0.810 0.701 0.607
(0.25,5) 1.714 1.667 1.349 1.089 0.815
(0.25,10) 2.937 2.833 2.277 1.771 1.109
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distribution. Here, we use the concept of the charting scheme of Zou et al.9 but with a different estimator for monitoring the vector of
coefficient parameters b. Define

ZPE;j bð Þ ¼ b̂PE;j RQ að Þð Þ � b
� �

=s a; Fð Þ (12)

and
WPE;j ¼ lZPE;j bð Þ þ 1� lð ÞWPE;j�1; j ¼ 1; 2; . . . ; (13)

where b
^
PE,j(RQ(a)) is the trimmed least squares estimator of b proposed by Rupport and Carroll36 based on the jth sample, WPE,0 is a

p-dimensional starting vector, and l is the smoothing constant. The chart signals if

UPE;j ¼ W
0
PE ;j X

0
X

� �
WPE;j > Lb

l
2� l

: (14)

In the paper, the smoothing constant l is chosen to be .2 which is consistent with Kim et al. 2, Zou et al. 9, and most of the EWMA
schemes in the literature. Generally, a smaller value of l causes more timely detection of smaller profile shifts. The initial vectorWPE,0 is
taken to be the zero vector, and the control limit Lb is decided by the IC ARL and the smoothing constant l.
3. Control charts for monitoring coefficient parameters and standard deviation
simultaneously

In the article, we assume that the distribution function F of the random errors has a contaminated normal distribution.
Apparently, it is not appropriate to use the charting statistic of the variance transformation (9) to monitor the standard deviation
s of F. Since the standard deviation s is positive, it is a common practice to use the log transformation to obtain a better normal
approximation. Define

ZPE;j sð Þ ¼
logs2j a; Fð Þ � E logs2j a; Fð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var logs2j a; Fð Þ

� �r ; (15)
Table II. Simulated values of Var(lns2(a,F))
(k,b) a=0 a= 0.05 a= 0.1 a= 0.15 a=0.25

(0,1) 0.118 0.125 0.149 0.177 0.280
(0.05,3) 0.239 0.202 0.188 0.195 0.287
(0.05,5) 0.536 0.398 0.273 0.225 0.293
(0.05,10) 1.434 1.065 0.555 0.316 0.304
(0.1,3) 0.298 0.254 0.227 0.220 0.298
(0.1,5) 0.650 0.531 0.398 0.305 0.319
(0.1,10) 1.497 1.279 0.950 0.597 0.368
(0.25,3) 0.312 0.302 0.297 0.291 0.341
(0.25,5) 0.519 0.525 0.559 0.521 0.456
(0.25,10) 0.782 0.854 1.141 1.194 0.830
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Table III. Upper control limits H= Ll/(2� l) and Hb= Lbl/(2� l)of the MEWMA and proposed charts respectively for monitoring
coefficient parameters when n= 20, l= 0.2 and IC ARL�100

(k,b) H Hb(a= 0.05) Hb(a= 0.1) Hb(a= 0.15) Hb(a=0.25)

(0,1) 0.897 0.946 0.981 0.989 0.991
(99.589) (100.2967) (100.123) (99.891) (99.930)

(0.05,3) 0.924 0.979 1.013 1.008 1.005
(99.852) (100.007) (100.168) (100.083) (100.015)

(0.05,5) 0.992 1.100 1.057 1.031 1.018
(99.347) (99.92665) (99.866) (100.196) (99.886)

(0.05,10) 1.120 1.880 1.173 1.069 1.035
(100.283) (99.824) (99.712) (100.613) (100.234)

(0.1,5) 0.978 1.378 1.193 1.108 1.070
(100.540) (100.243) (99.992) (99.992) (99.745)

(0.1,10) 1.030 3.177 1.853 1.279 1.122
(100.272) (100.118) (100.013) (99.279) (99.694)

(0.25,5) 0.939 1.203 1.608 1.486 1.302
(99.836) (99.910) (99.859) (99.973) (100.316)

(0.25,10) 0.950 1.259 3.123 3.198 1.876
(100.386) (100.237) (99.927) (100.237) (100.373)

Parentheses contain the corresponding IC ARLs.

Table IV. Upper control limits H= Ll/(2� l) of the MEWMA chart and Hb= Lbl/(2� l) and Hs= Lsl/(2� l) of the proposed chart
for monitoring coefficient parameters and standard deviation, simultaneously when n= 20, l= 0.2 and IC ARL �100

a=0.05 a=0.1 a=0.15 a= 0.25

(k,b) H Hb Hb Hb Hb

Hs Hs Hs Hs

(0,1) 1.136 1.048 1.087 1.098 1.099
(99.988) 0.935 0.933 0.939 0.941

(99.970) (100.078) (99.979) (99.625)
(0.05,3) 1.195 1.084 1.122 1.116 1.118

(99.950) 0.952 0.948 0.943 0.947
(100.159) (100.331) (99.797) (100.053)

(0.05,5) 1.290 1.226 1.178 1.145 1.132
(100.175) 0.949 0.974 0.962 0.948

(100.153) (100.691) (100.179) (99.859)
(0.05,10) 1.410 2.180 1.318 1.185 1.153

(99.918) 0.908 1.007 1.052 0.955
(100.396) (100.159) (100.210) (100.472)

(0.1,5) 1.220 1.548 1.333 1.234 1.195
(100.021) 0.913 0.941 0.958 0.952

(100.308) (100.163) (100.243) (100.109)
(0.1,10) 1.249 3.655 2.145 1.452 1.252

(99.923) 0.884 0.918 1.000 0.985
(100.672) (99.710) (100.763) (99.859)

(0.25,5) 1.157 1.352 1.819 1.687 1.466
(100.243) 0.912 0.905 0.915 0.944

(100.189) (100.276) (100.589) (100.090)
(0.25,10) 1.181 1.430 3.620 3.755 2.206

(100.214) 0.939 0.898 0.886 0.952
(100.238) (100.543) (100.672) (100.298)

Parentheses contain the corresponding IC ARLs.
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where s2j a; Fð Þ is computed based on (6) using the jth profile data. Due to the difficulty of deriving the exact distribution of s2j a; Fð Þ,
here we use statistical simulation to compute E

�
logs2j a; Fð ÞÞ and Var

�
logs2j a; Fð ÞÞ . Tables I and II tabulate the simulated values of
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013
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E
�
logs2j a; Fð ÞÞ andVar�logs2j a; Fð ÞÞ, respectively, for n= 20, a= 0, 0.05, 0.1, 0.15, 0.25 and several contaminated normal distributions of F.

The contaminated normal distributions of F have the form

F � 1� kð ÞN 0; 1ð Þ þ kN 0; b2
� �

; (16)

where 0 ≤ k ≤ 1 and b ≥ 1. Note that this contaminated normal distribution is commonly used as a heavy-tailed alternative to the
normal distribution. The results are based on 50,000 simulations. From the tables, we can see that for fixed k and a both
E(logs2(a,F)) and Var

�
logs2j a; Fð ÞÞ are increasing in b. Consequently, we define

VPE;j ¼ lZPE;j sð Þ þ 1� lð ÞVPE;j�1; j ¼ 1; 2; . . . ; (17)

where VPE,0 = 0. The variance chart signals if

VPE;j
�� �� > Ls

l
2� l

; (18)

where Ls is determined to achieve a specified IC ARL. In order to monitor the whole profile, the two EWMA charts (14) and (18) are
used jointly, and the profile change is detected as one of the two charts signals.
4. Performance comparisons

In this section, we compare the performance of the proposed and MEWMA charts for monitoring the coefficient parameters only
and the coefficient parameters and standard deviation simultaneously. As for monitoring the coefficient parameters and
Figure 1. Improved percentages of the OC ARLs of the proposed charts for monitoring coefficient parameters when b0 ! b0 þ cI

Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013



Figure 2. Improved percentages of the OC ARLs of the proposed charts for monitoring coefficient parameters when b1 ! b1 þ cS
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standard deviation jointly, we substitute the term ZPE,j(s) in (15) with a= 0 for Zj(s) in (9) in constructing the MEWMA chart of Zou
et al.9because under the assumption that F has a contaminated normal distribution, the variance transformation (9) is obviously
not appropriate and hence the original MEWMA chart is not feasible. Assume that when the process is in control, we have

yij ¼ b0 þ b1xi þ eij; i ¼ 1; 2;⋯; n; j ¼ 1; 2;⋯; (19)

where b0 = 13, b1 = 2, and eij has the distribution function F defined in (16). Here, we also assume that the sample size n= 20 and xi,
i=1, . . ., 20, are equally spaced values, �19, (2), 19. Note that except for larger sample size n, the underlying IC model is the same
as that of Kang and Albin1 with rescaling when k= 0. For monitoring the coefficient parameters only, Table III tabulates the upper
control limits H= Ll/(2� l) and Hb= Lbl/(2� l) of the MEWMA chart (without the Zj(s) component) and the proposed chart,
respectively, for IC ARL = 100, (k,b) = (0,1), (0.05, 3), (0.05, 5), (0.05, 10), (0.1, 5), (0.1, 10), (0.25, 5), (0.25, 10), a=0.05, 0.1, 0.15, 0.25
and l=0.02 based on 50,000 simulations. Similarly, for monitoring both the coefficient parameters and standard deviation, Table IV
displays the upper control limit H= Ll/(2� l) of the MEWMA chart and the upper control limits Hb= Lbl/(2� l) and Hs= Lsl/(2� l) of
the proposed chart for IC ARL= 100, (k,b) = (0,1), (0.05, 3), (0.05, 5), (0.05, 10), (0.1, 5), (0.1, 10), (0.25, 5), (0.25, 10), a= 0.05, 0.1, 0.15, 0.25,
and l=0.02 based on 50,000 simulations. For the proposed control chart, the individual IC ARL for the Hs is about twice as large as
that for the Hb such that the overall IC ARL = 100. It is also appropriate to set other different individual IC ARLs for the Hs. It totally
depends on how important that detecting a shift in s is compared to that in a coefficient parameter. Note that we also simulated
the upper control limits for several different parameter configurations from those in model (19) for the same IC ARL (not reported
here). The results are quite similar to those tabulated in Tables III and IV. Hence, we conclude that the proposed control charts are
parameter invariant approximately as long as the sample size n is not too small (n≥ 20). Figures 1 and 2 present the improved
percentages of the out-of-control (OC) ARLs of the proposed charts with respect to those of the MEWMA charts for detecting shifts
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013



Figure 3. Improved percentages of the OC ARLs of the proposed charts for monitoring coefficient parameters and standard deviation simultaneously when b0 ! b0 þ cI
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in b0 and b1, respectively. The 95% confidence intervals are also included (ULs and LLs in the figures). Precisely, the improved
percentage is defined as the OC ARL of the MEWMA chart minus that of the proposed chart, and then divided by the OC ARL of
the MEWMA chart. All the OC ARLs are computed based on 10,000 simulations. In this way, it is easy to judge how much improvement
the proposed chart has attained. From the figures, we see that the proposed chart using the trimmed least squares estimator b

^
PE(RQ

(a)) outperforms the MEWMA chart when F has a contaminated normal distribution although it loses a little efficiency when F has a
normal distribution. For example, when b0 is changed to b0 + 0.15, the OC ARL of the MEWMA chart equals 15.429 and that of the
proposed chart equals 17.631 for a=0.1 when k=0 (i.e. F has a standard normal distribution). On the other hand, the OC ARL of
the MEWMA chart equals 34.119 (43.446, 58.984) and that of our proposed chart equals 21.101 (26.794, 49.410) for a=0.1 when (k,
b) = (0.05,5)((0.1,5),(0.25,5)) (i.e. F has a contaminated normal distribution).

For monitoring the coefficient parameters and the standard deviation simultaneously, Figures 3–5 present the improved
percentages of the OC ARLs of the proposed charts with respect to those of the MEWMA charts for detecting shifts in b0, b1,
and s, respectively, based on 10,000 simulations. For detecting shifts in b0 (b1), Figure 3 (Figure 4) shows that the proposed chart
performs uniformly better than the MEWMA chart when F has a contaminated normal distribution at the price that it gives slightly
larger OC ARLs than the MEWMA chart when F has a normal distribution. As for monitoring s, from the simulation results
(not reported to save space), we see that the OC ARLs are not quite symmetric in detecting increase and decrease shifts for both
the MEWMA and the proposed charts. In fact, both charts occasionally have biased results (OC ARL greater than IC ARL) in
detecting decrease shifts in s when F has a contaminated normal distribution although the proposed chart seems to be not as
serious as the MEWMA chart. Note that in these cases, the advantage of the proposed chart over the MEWMA chart is significant
in detecting decrease shifts but not in increase shifts. This results from the fact that the MEWMA charts is more biased than the
proposed chart as it has a higher efficiency in detecting increase shifts than decrease shifts when F has a higher degree
contaminated normal distribution.

In summary, when the distribution F of the random errors has a contaminated normal distribution, if k ≤ 0.05 and b ≤ 5, the
proposed chart gives smaller OC ARLs with the trimmed proportion a= 0.05 or 0.1; if k> 0.05 or b> 5, the proposed chart performs
much better with trimmed proportion a= 0.15 or 0.25 approximately. Practically, a better way to determine the value of the
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013



Figure 4. Improved percentages of the OC ARLs of the proposed charts for monitoring coefficient parameters and standard deviation simultaneously when b1 ! b1 þ cS
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trimmed proportion a is to develop a data-driven methodology. However, this topic is beyond the scope of this research and is not
pursued here.

We also simulated the performance of the proposed andMEWMA charts under the situation that F� (1� k)N(y,s2) + kN(’,t2) where k is
small,’ is quite different from y, and t is small (not reported here). The results are similar to above as long as k≤0.2 and themeans y and’
are, respectively, more than 3 standard deviations from the other normal distribution. Although in this situation, the distribution
F generates outliers near the value ’ and is not exactly symmetric, the proposed method still works satisfactory.
5. An illustrative example

In this section, we use a real dataset of general linear profiles where the random errors have contaminated normal distributions to
illustrate how to implement the proposed charts in practice. This dataset was generated from a manufacturing process of aluminum
electrolytic capacitors (AECs). It is concerned with the transformation of raw materials (anode aluminum oil, cathode aluminum foil,
guiding pin, electrolyte sheet, plastic cover, aluminum shell, and plastic tube) into AECs which are suitable for use in low-leakage
circuits and are well adapted to a large range environmental temperatures. The entire manufacturing process, which is also a
multistage process, consists of a series of operations, such as clenching, rolling, soaking, assembly, cleaning, aging, and classifying
(see Shi39). After each stage, the quality of capacitor elements, the unfinished AEC products, is examined by sampling according to
its appearance and functional performance. Important characteristics of an AEC, for example, the dissipation factor and capacitance,
are automatically calibrated via an electronic equipment at certain predetermined measuring voltage, frequency, and temperature.
The general linear models (profiles) were commonly used in the literature to represent the relationship between the characteristics
of the AEC from one stage to another stage (Shi39). Consequently, a remarkably change in the relationship may point out that the
process is out of control. Note that Qiu et al.28 and Zi et al.29 also used different parts of this dataset to demonstrate profile monitoring
although their methodologies emphasize on nonparametric approaches.
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013



Figure 5. Improved percentages of the OC ARLs of the proposed charts for monitoring coefficient parameters and standard deviation simultaneously when s ! css
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As illustrated by Zi et al.29, the response variable y denotes the dissipation factor value in the aging stage and the independent
variables x1 and x2 respectively represent the capacitance value and the dissipation factor observation from the soaking stage. There
are totally 243 profiles of sample size 10. On the basis of physical knowledge and engineers’ experiences, 227 out of 243 profiles are
deemed as IC profiles and the other 16 profiles as OC (inferior) profiles. To simplify the data analysis, we only use 175 out of 227
profiles to demonstrate the proposed method in a realistic situation (the dataset is available on request). Since the independent
variables xi are not exactly the same for each of the 175 profiles, the 175 profiles are pooled together as a single sample. As a result,
there are totally 1750 observations of y. Applying the ordinary least squares estimation to these data, we have the estimated IC profile

yi ¼ aþ bx1i þ cx2i þ dx21i þ ei; i ¼ 1; . . . ; 10; (20)

where a= 26.210, b=6.784, c=3.848, d= 0.253, and s2e ¼ 0:341 . Note that although the above least squares estimates of the
parameters are not most efficient, they are consistent estimates and based on such a large sample size, they should be very close
Figure 6. q� q plot for the residuals of the 175 in-control profiles

Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013
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Figure 8. The proposed chart for monitoring the AEC profiles
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to the unknown true parameters. As a result, we shall treat them as the true parameters of the IC process. To test the normality
assumption on the error distribution, the chi-square statistic has p-value very close to 0. Consequently, the null hypothesis of
normality on the error distribution is rejected. The q� q plot and histogram of the residuals, presented in Figures 6 and 7, also confirm
the result. Here, we use EM algorithm to classify the 1750 residuals into two groups. The means, variances, and proportions of the two
groups are m1 = 0.064 and m2 =� 1.540, s21 ¼ 0:247 and s22 ¼ 0:131, and 1� k= 0.96 and k= 0.04, respectively. The chi-square statistics
for testing the normality assumption on these two groups have p-values 0.062 and 0.169, respectively (both do not reject the null
hypothesis of being normal). The q� q plot and histogram of the residuals also demonstrate the same results. This verifies that the
random error has a contaminated normal distribution F� 0.96N(0.064,0.247) + 0.04N(�1.540, 0.131). Note that the Fmay not be a fully
ideal heavy-tailed distribution, it suffices to demonstrate the applicability of the proposed method because k=0.04 is small and the
two group means, 0.064 and �1.540, are, respectively, more than 3 standard deviations from the other normal distribution.
Furthermore, F has mean 0 and approximate symmetric distribution, and consequently, the trimmed least squares estimation which
uses an effective preliminary estimator of the coefficient vector via the regression quantile introduced previously can be applied.

In this AEC process, the shift in regression coefficients may result in a different relationship between the dissipation factor values in
the aging stage and the values of capacitance and dissipation factor observations in the soaking stage. On the other hand, an increase
in standard deviation may indicate a rough profile or inaccuracies in the process and a decrease in standard deviation would illustrate
an improvement in the process, as the regression coefficients do not shift. In the following, we shall use the proposed control charts
to monitor the quadratic profile where the random error has a contaminated normal distribution to detect if there is any shift in the
process parameters. Here, we will generate an OC scenario to demonstrate the applicability of the proposed and MEWMA charts.

First, we choose the IC ARL to be 100 and the smoothing constant l= 0.2. Subsequently, we obtain the upper control limits
Hb=26.220 and Hs=1.010 for the proposed chart with trimming proportion a=0.1 and the upper control limit H=13.765 for the
MEWMA chart. Then, we construct the proposed and MEWMA charts for a Phase II monitoring. For the first four IC profiles, we
generate profile data from model (20) with ei� 0.96N(0.064,0.247) + 0.04N(�1.540, 0.131). Starting at the fifth profile, we add a
shift of d on the IC model from 0.253 to 0.370 (about 0.2se) and generate the OC profiles through Monte Carlo simulation.
The simulated yij, i=1, . . ., 10 and j= 1, . . ., 16 and the corresponding statistics UPE,j and VPE,j for the proposed chart and Uj for
the MEWMA chart are presented in Table V.
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013
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Figure 9. MEWMA chart for monitoring the AEC profiles

L. HUWANG, Y.-H. T. WANG AND C.-C. SHEN
Figures 8, 9 give the proposed and MEWMA charts for monitoring these IC and OC sample profiles, where both control charts
detect the changes in the coefficient parameters and standard deviation simultaneously. From the figures, we see that our proposed
chart for monitoring the coefficient parameters detects an OC signal at profile 9 whereas the MEWMA chart triggers a signal at profile
16. For this artificial example, our proposed chart is more effective than the MEWMA chart by detecting the OC signal seven profiles
earlier. It is worth noting that the magnitudes of shift in these profiles are usually small and difficult to identify by bare eyes. Therefore,
we need an effective control chart to reveal small shifts in the profiles. After discovering the OC signal, users need to identify whether
this is a true alarm or not. If yes, they may try to find the assignable causes and repair the process. The monitoring procedure for the
AEC process can be restarted after the process has been adjusted back to normal conditions.
6. Conclusion

In this article, we have proposed a new control chart for monitoring the general linear profiles when the errors have contaminated
normal distributions. The new control chart is based on the trimmed least squares estimation which makes use of an effective
preliminary estimator of the vector of coefficient parameters through the regression quantile. On the basis of performance
comparisons, the proposed chart outperforms the MEWMA chart when the errors have contaminated normal distributions at the price
that it loses little efficiency when the errors have normal distributions. As illustrated by the AEC process, the proposed charting
scheme can be practically applied in industry as the quality of a process can be described by a general linear profile with the error
having a contaminated normal distribution. The future research which deserves further investigation is that how to estimate a
changepoint in profile monitoring and identify the specific parameters in the profile that have changed when an OC signal is
triggered by a control chart.
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